

Stochastic Power System Operations Toolkit

Cesar A. Silva-Monroy, Ph.D.

FERC June 25, 2014

Exceptional

service

in the

national

interest

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Team

Sandia

- Cesar A. Silva-Monroy, Ph.D. Electric Power Research Group
- Jean-Paul Watson, Ph.D. Analytics
- Richard Chen, Ph.D. Quantitative Modeling and Analysis
- Ali Pinar, Ph.D. Quantitative Modeling and Analysis
- Francisco Muñoz, Ph.D. Analytics

LBNL

Andrew D. Mills – Electricity Markets and Policy Group

Technical Review Committee

- Utilities/ISOs:
 - Ronald Flood (APS)
 - James Hansen (APS)
 - Valerie vonSchramm (CPS)
 - Hung-Po Chao (ISO-NE)
- Industry:
 - Kwok Cheung (Alstom)
- Academia:
 - Sarah Ryan (ISU)
 - David Woodruff (UC Davis)
- DOE
 - Venkat Banunarayanan

Power System Planning/Operations

- Decision making in power systems looks at processes ranging from very large time constants to near real-time:
 - Years, Seasons, Months, Weeks: Resource adequacy, transmission and hydro resource planning.
 - **Days**: Hydro-thermal coordination, day-ahead UC of energy and reserves, intra-day UC.
 - **Hours**: intra-day look-ahead processes, dynamic economic dispatch.
 - **Minutes**: Economic Dispatch (ED).
 - Seconds: Automatic Generation Control (AGC).

Unit Commitment (UC)

- Schedule generation resources (ON/OFF) such that generation costs are minimized while meeting the (net) load
 - Generation costs: Start-up/Shut-down costs, no load costs, fuel costs.
 - Net load = Load Non-dispatchable generation (wind, solar)
- Subject to operating and physical constraints (generator min. up/down times, transmission limits, reserve requirements)

Stochastic Unit Commitment

Schedule generation resources (ON/OFF) such that expected generation costs are minimized under several load and renewable generation

So Why Isn't Stochastic Optimization Deployed in Power Systems Contexts?

- Modeling is significantly more complex
 - Stochastic process models, multi-stage decisions
 - Need data and significant expertise in both optimization and statistics
- Another reason is that stochastic optimization problems are in general exceptionally difficult to solve
 - Solve times were far from those required for operations problems (ARPA-e SNL-led project with UC Davis, ISU, Alstom, ISO-NE)

Project Goals

- Create a stochastic operations toolkit for systems with high penetration of solar energy
 - Utilities can use to explore stochastic UC
 - Parametric and data driven stochastic models
 - Able to perform batch simulations
 - Open source
 - User friendly
- Demonstrate savings associated with using stochastic operations in a utility-scale test case
- Make toolkit available to the public and share test case findings with stakeholders

Power System Operations

- Deregulated Regions
 - Day-Ahead Market
 - Reliability Unit Commitment
 - Intra-Day Commitment/Look-Ahead Dispatch
 - Economic Dispatch
- Vertically Integrated Utility
 - Day-Ahead Unit Commitment
 - Intra-Day Commitment/Look-Ahead Dispatch
 - Economic Dispatch

Toolkit Block Diagram

Stochastic Process Models

Parametric

- Plant size, lat/long, altitude, tilt, etc.
- Calculates clear sky index (using pv_lib* functions)
- Assumes persistance forecast to calculate forecast error pdf

Non-parametric

- Solar power DA forecasts and actuals
- If forecasts are not available, clear sky index persistance forecasts can be calculated
- Forecast error pdf are calculated

*available at http://pvpmc.org

Stochastic UC

- 2 Stage Stochastic UC
- Minimize commitment (i.e., start-up and no-load) costs and expected dispatch costs to provide sufficient capacity to satisfy forecasted net load plus reserve requirements
- Hourly resolution (data-limited)
- Stochastic inputs:
 - Solar power plant output, demand
- **Produces:**
 - Generator commitments
 - Distribution of dispatch set points
- Solar plant output modeled as:
 - Must take curtailed only for reliability
 - Dispatchable curtailed for economics or reliability

Economic Dispatch

- Deterministic
- Minimize cost of serving the net load actuals (load and solar power plant output)
- Hourly resolution (data limited)
- Produces:
 - Generator set points
- Uses commitment solution from stochastic UC
- NOTE:
 - Given higher-resolution load and forecast data, we can compute a stochastic economic dispatch in a straightforward manner

Running Modes

- Multi-day simulation (batch)
 - Simulate operation for long periods of time
 - High data need: operator has access to multiple days of historical data for generator cost/offers, load and forecast of load and solar
 - Better reflects advantages of using stochastic operations
- Single-day operation
 - Run single day operation
 - Lower data need: operator has access to next day's load forecast
 - On any given day, stochastic UC results might produce better/lower operational costs than deterministic... or not

Conclusions

- Several stochastic unit commitment computational barriers have been overcome
 - But it remains a difficult task in practice...
- Our objective is to provide software tools that reduce the implementation burden and help utilities/ISOs to get familiar with stochastic tools
- We are happy to talk with parties interested in using this tools in the future

E-mail: casilv@sandia.gov